* Running on 2 nodes in parallel
>> Start of run: 30-SEP-2017 4:22:10
***********************
* WELCOME TO SIESTA *
***********************
reinit: Reading from standard input
************************** Dump of input data file ****************************
# $Id: Fe.fdf,v 1.1 1999/04/20 12:52:43 emilio Exp $
# -----------------------------------------------------------------------------
# FDF for bcc iron
#
# GGA, Ferromagnetic.
# Scalar-relativistic pseudopotential with non-linear partial-core correction
#
# E. Artacho, April 1999
# -----------------------------------------------------------------------------
SystemName bcc Fe ferro GGA # Descriptive name of the system
SystemLabel Fe # Short name for naming files
# Output options
WriteCoorStep
WriteMullikenPop 1
# Species and atoms
NumberOfSpecies 1
NumberOfAtoms 1
%block ChemicalSpeciesLabel
1 26 Fe
%endblock ChemicalSpeciesLabel
# Basis
PAO.EnergyShift 50 meV
PAO.BasisSize DZP
%block PAO.Basis
Fe 2
0 2 P
6. 0.
2 2
0. 0.
%endblock PAO.Basis
LatticeConstant 2.87 Ang
%block LatticeVectors
0.50000 0.500000 0.500000
0.50000 -0.500000 0.500000
0.50000 0.500000 -0.500000
%endblock LatticeVectors
KgridCutoff 15. Ang
%block BandLines
1 0.00000 0.000000 0.000000 \Gamma
40 2.00000 0.000000 0.000000 H
28 1.00000 1.000000 0.000000 N
28 0.00000 0.000000 0.000000 \Gamma
34 1.00000 1.000000 1.000000 P
%endblock BandLines
xc.functional GGA # Exchange-correlation functional
xc.authors PBE # Exchange-correlation version
SpinPolarized true # Logical parameters are: yes or no
MeshCutoff 150. Ry # Mesh cutoff. real space mesh
# SCF options
MaxSCFIterations 40 # Maximum number of SCF iter
DM.MixingWeight 0.1 # New DM amount for next SCF cycle
DM.Tolerance 1.d-3 # Tolerance in maximum difference
# between input and output DM
DM.UseSaveDM true # to use continuation files
DM.NumberPulay 3
SolutionMethod diagon # OrderN or Diagon
ElectronicTemperature 25 meV # Temp. for Fermi smearing
# MD options
MD.TypeOfRun cg # Type of dynamics:
MD.NumCGsteps 0 # Number of CG steps for
# coordinate optimization
MD.MaxCGDispl 0.1 Ang # Maximum atomic displacement
# in one CG step (Bohr)
MD.MaxForceTol 0.04 eV/Ang # Tolerance in the maximum
# atomic force (Ry/Bohr)
# Atomic coordinates
AtomicCoordinatesFormat Fractional
%block AtomicCoordinatesAndAtomicSpecies
0.000000000000 0.000000000000 0.000000000000 1
%endblock AtomicCoordinatesAndAtomicSpecies
************************** End of input data file *****************************
reinit: -----------------------------------------------------------------------
reinit: System Name: bcc Fe ferro GGA
reinit: -----------------------------------------------------------------------
reinit: System Label: Fe
reinit: -----------------------------------------------------------------------
initatom: Reading input for the pseudopotentials and atomic orbitals ----------
Species number: 1 Label: Fe Atomic number: 26
Ground state valence configuration: 4s02 3d06
Reading pseudopotential information in formatted form from Fe.psf
Pseudopotential generated from a relativistic atomic calculation
There are spin-orbit pseudopotentials available
Spin-orbit interaction is not included in this calculation
Valence configuration for pseudopotential generation:
4s( 2.00) rc: 2.00
4p( 0.00) rc: 2.00
3d( 6.00) rc: 2.00
4f( 0.00) rc: 2.00
For Fe, standard SIESTA heuristics set lmxkb to 3
(one more than the basis l, including polarization orbitals).
Use PS.lmax or PS.KBprojectors blocks to override.
Warning: Empty PAO shell. l = 1
Will have a KB projector anyway...
read_vps: Pseudopotential includes a core correction:
read_vps: Pseudo-core for xc-correction
xc_check: Exchange-correlation functional:
xc_check: GGA Perdew, Burke & Ernzerhof 1996
V l=0 = -2*Zval/r beyond r= 2.7645
V l=1 = -2*Zval/r beyond r= 2.7645
V l=2 = -2*Zval/r beyond r= 2.7645
V l=3 = -2*Zval/r beyond r= 2.7645
All V_l potentials equal beyond r= 1.9726
This should be close to max(r_c) in ps generation
All pots = -2*Zval/r beyond r= 2.7645
Using large-core scheme for Vlocal
atom: Estimated core radius 2.76453
atom: Maximum radius for 4*pi*r*r*local-pseudopot. charge 3.05528
atom: Maximum radius for r*vlocal+2*Zval: 2.79930
GHOST: No ghost state for L = 0
GHOST: No ghost state for L = 1
GHOST: No ghost state for L = 2
GHOST: No ghost state for L = 3
coor: Atomic-coordinates input format = Fractional
siesta: Atomic coordinates (Bohr) and species
siesta: 0.00000 0.00000 0.00000 1 1
siesta: System type = bulk
initatomlists: Number of atoms, orbitals, and projectors: 1 15 16
siesta: ******************** Simulation parameters ****************************
siesta:
siesta: The following are some of the parameters of the simulation.
siesta: A complete list of the parameters used, including default values,
siesta: can be found in file out.fdf
siesta:
redata: Non-Collinear-spin run = F
redata: SpinPolarized (Up/Down) run = T
redata: Number of spin components = 2
redata: Long output = F
redata: Number of Atomic Species = 1
redata: Charge density info will appear in .RHO file
redata: Write Mulliken Pop. = Atomic and Orbital charges
redata: Mesh Cutoff = 150.0000 Ry
redata: Net charge of the system = 0.0000 |e|
redata: Min. number of SCF Iter = 0
redata: Max. number of SCF Iter = 40
redata: Mix DM or H after convergence = F
redata: Recompute H after scf cycle = F
redata: Performing Pulay mixing using = 3 iterations
redata: Mix DM in first SCF step ? = F
redata: Write Pulay info on disk? = F
redata: Discard 1st Pulay DM after kick = F
redata: New DM Mixing Weight = 0.1000
redata: New DM Occupancy tolerance = 0.000000000001
redata: No kicks to SCF
redata: DM Mixing Weight for Kicks = 0.5000
redata: DM Tolerance for SCF = 0.001000
redata: Require (free) Energy convergence in SCF = F
redata: DM (free)Energy tolerance for SCF = 0.000010 eV
redata: Require Harris convergence for SCF = F
redata: DM Harris energy tolerance for SCF = 0.000010 eV
redata: Antiferro initial spin density = F
redata: Using Saved Data (generic) = F
redata: Use continuation files for DM = T
redata: Neglect nonoverlap interactions = F
redata: Method of Calculation = Diagonalization
redata: Divide and Conquer = T
redata: Electronic Temperature = 0.0018 Ry
redata: Fix the spin of the system = F
redata: Dynamics option = Single-point calculation
redata: ***********************************************************************
Total number of electrons: 8.000000
Total ionic charge: 8.000000
* ProcessorY, Blocksize: 1 8
* Orbital distribution balance (max,min): 8 7
Kpoints in: 1183 . Kpoints trimmed: 1099
siesta: k-grid: Number of k-points = 1099
siesta: k-grid: Cutoff (effective) = 16.156 Ang
siesta: k-grid: Supercell and displacements
siesta: k-grid: 0 13 0 0.000
siesta: k-grid: 0 0 13 0.000
siesta: k-grid: 13 0 0 0.000
Using LatticeConstant from fdf file for BandLinesScale: 5.423516 Bohr
Beware any cell changes by the end of the run
Using LatticeConstant from fdf file for BandLinesScale: 5.423516 Bohr
Beware any cell changes by the end of the run
Naive supercell factors: 7 7 7
superc: Internal auxiliary supercell: 7 x 7 x 7 = 343
superc: Number of atoms, orbitals, and projectors: 343 5145 5488
SCF Convergence by dMax criterion
max |DM_out - DM_in|: 0.00084024
SCF cycle converged after 24 iterations
Using DM_out to compute the final energy and forces
siesta: E_KS(eV) = -782.2426
siesta: E_KS - E_eggbox = -782.2426
siesta: Atomic forces (eV/Ang):
----------------------------------------
Tot 0.000000 -0.000000 0.000000
----------------------------------------
Max 0.000000
Res 0.000000 sqrt( Sum f_i^2 / 3N )
----------------------------------------
Max 0.000000 constrained
***********************
* WELCOME TO SIESTA *
***********************
reinit: Reading from standard input
reinit: Dumped input in INPUT_TMP.47960
************************** Dump of input data file ****************************
SystemName Water molecule
SystemLabel h2o
NumberOfAtoms 3
NumberOfSpecies 2
MeshCutoff 50 Ry
%block ChemicalSpeciesLabel
1 8 O # Species index, atomic number, species label
2 1 H
%endblock ChemicalSpeciesLabel
AtomicCoordinatesFormat Ang
%block AtomicCoordinatesAndAtomicSpecies
0.000 0.000 0.000 1
0.757 0.586 0.000 2
-0.757 0.586 0.000 2
%endblock AtomicCoordinatesAndAtomicSpecies
save-rho T
save-delta-rho T
save-total-potential T
save-neutral-atom-potential T
save-hs T
************************** End of input data file *****************************
* Running on 4 nodes in parallel
>> Start of run: 14-OCT-2017 4:13:42
initatom: Reading input for the pseudopotentials and atomic orbitals ----------
Species number: 1 Atomic number: 8 Label: O
Species number: 2 Atomic number: 1 Label: H
Ground state valence configuration: 2s02 2p04
Reading pseudopotential information in formatted form from O.psf
Valence configuration for pseudopotential generation:
2s( 2.00) rc: 1.14
2p( 4.00) rc: 1.14
3d( 0.00) rc: 1.14
4f( 0.00) rc: 1.14
Ground state valence configuration: 1s01
Reading pseudopotential information in formatted form from H.psf
Valence configuration for pseudopotential generation:
1s( 1.00) rc: 1.25
2p( 0.00) rc: 1.25
3d( 0.00) rc: 1.25
4f( 0.00) rc: 1.25
For O, standard SIESTA heuristics set lmxkb to 3
(one more than the basis l, including polarization orbitals).
Use PS.lmax or PS.KBprojectors blocks to override.
For H, standard SIESTA heuristics set lmxkb to 2
(one more than the basis l, including polarization orbitals).
Use PS.lmax or PS.KBprojectors blocks to override.
xc_check: Exchange-correlation functional:
xc_check: Ceperley-Alder
V l=0 = -2*Zval/r beyond r= 1.1278
V l=1 = -2*Zval/r beyond r= 1.1278
V l=2 = -2*Zval/r beyond r= 1.1278
V l=3 = -2*Zval/r beyond r= 1.1138
All V_l potentials equal beyond r= 1.1278
This should be close to max(r_c) in ps generation
All pots = -2*Zval/r beyond r= 1.1278
VLOCAL1: 99.0% of the norm of Vloc inside 34.126 Ry
VLOCAL1: 99.9% of the norm of Vloc inside 77.774 Ry
atom: Maximum radius for 4*pi*r*r*local-pseudopot. charge 1.37759
atom: Maximum radius for r*vlocal+2*Zval: 1.18566
GHOST: No ghost state for L = 0
GHOST: No ghost state for L = 1
GHOST: No ghost state for L = 2
GHOST: No ghost state for L = 3
xc_check: Exchange-correlation functional:
xc_check: Ceperley-Alder
V l=0 = -2*Zval/r beyond r= 1.2343
V l=1 = -2*Zval/r beyond r= 1.2189
V l=2 = -2*Zval/r beyond r= 1.2189
All V_l potentials equal beyond r= 1.2343
This should be close to max(r_c) in ps generation
All pots = -2*Zval/r beyond r= 1.2343
VLOCAL1: 99.0% of the norm of Vloc inside 28.493 Ry
VLOCAL1: 99.9% of the norm of Vloc inside 64.935 Ry
atom: Maximum radius for 4*pi*r*r*local-pseudopot. charge 1.45251
atom: Maximum radius for r*vlocal+2*Zval: 1.21892
GHOST: No ghost state for L = 0
GHOST: No ghost state for L = 1
GHOST: No ghost state for L = 2
%block ChemicalSpeciesLabel
1 8 O # Species index, atomic number, species label
2 1 H # Species index, atomic number, species label
%endblock ChemicalSpeciesLabel
%block PAO.Basis # Define Basis set
O 2 # Species label, number of l-shells
n=2 0 2 # n, l, Nzeta
3.305 2.510
1.000 1.000
n=2 1 2 P 1 # n, l, Nzeta, Polarization, NzetaPol
3.937 2.542
1.000 1.000
H 1 # Species label, number of l-shells
n=1 0 2 P 1 # n, l, Nzeta, Polarization, NzetaPol
4.828 3.855
1.000 1.000
%endblock PAO.Basis
initatomlists: Number of atoms, orbitals, and projectors: 3 23 34
siesta: ******************** Simulation parameters ****************************
siesta:
siesta: The following are some of the parameters of the simulation.
siesta: A complete list of the parameters used, including default values,
siesta: can be found in file out.fdf
siesta:
redata: Spin configuration = none
redata: Number of spin components = 1
redata: Time-Reversal Symmetry = T
redata: Spin-spiral = F
redata: Long output = F
redata: Number of Atomic Species = 2
redata: Charge density info will appear in .RHO file
redata: Write Mulliken Pop. = NO
redata: Mesh Cutoff = 50.0000 Ry
redata: Net charge of the system = 0.0000 |e|
redata: Min. number of SCF Iter = 0
redata: Max. number of SCF Iter = 50
redata: SCF mix quantity = Hamiltonian
redata: Mix DM or H after convergence = F
redata: Recompute H after scf cycle = F
redata: Mix DM in first SCF step = T
redata: Write Pulay info on disk = F
redata: New DM Mixing Weight = 0.2500
redata: New DM Occupancy tolerance = 0.000000000001
redata: No kicks to SCF
redata: DM Mixing Weight for Kicks = 0.5000
redata: Require Harris convergence for SCF = F
redata: Harris energy tolerance for SCF = 0.000100 eV
redata: Require DM convergence for SCF = T
redata: DM tolerance for SCF = 0.0001
redata: Require EDM convergence for SCF = F
redata: EDM tolerance for SCF = 0.001000 eV
redata: Require H convergence for SCF = T
redata: Hamiltonian tolerance for SCF = 0.001000 eV
redata: Require (free) Energy convergence for SCF = F
redata: (free) Energy tolerance for SCF = 0.000100 eV
redata: Using Saved Data (generic) = F
redata: Use continuation files for DM = F
redata: Neglect nonoverlap interactions = F
redata: Method of Calculation = Diagonalization
redata: Divide and Conquer = T
redata: Electronic Temperature = 299.9869 K
redata: Fix the spin of the system = F
redata: Dynamics option = Single-point calculation
mix.SCF: Pulay mixing = Pulay
mix.SCF: Variant = stable
mix.SCF: History steps = 2
mix.SCF: Linear mixing weight = 0.250000
mix.SCF: Mixing weight = 0.250000
mix.SCF: SVD condition = 0.1000E-07
redata: ***********************************************************************
DM_history_depth set to one: no extrapolation allowed by default for geometry relaxation
Size of DM history Fstack: 1
Total number of electrons: 8.000000
Total ionic charge: 8.000000
* ProcessorY, Blocksize: 2 6
* Orbital distribution balance (max,min): 6 5
Kpoints in: 1 . Kpoints trimmed: 1
siesta: k-grid: Number of k-points = 1
siesta: k-grid: Cutoff (effective) = 2.811 Ang
siesta: k-grid: Supercell and displacements
siesta: k-grid: 1 0 0 0.000
siesta: k-grid: 0 1 0 0.000
siesta: k-grid: 0 0 1 0.000
SCF Convergence by DM+H criterion
max |DM_out - DM_in| : 0.0000151486
max |H_out - H_in| (eV) : 0.0007470259
SCF cycle converged after 12 iterations
Using DM_out to compute the final energy and forces
No. of atoms with KB's overlaping orbs in proc 0. Max # of overlaps: 3 23
siesta: E_KS(eV) = -465.8407
siesta: E_KS - E_eggbox = -465.8407
siesta: Atomic forces (eV/Ang):
----------------------------------------
Tot 0.000000 0.055861 -0.000000
----------------------------------------
Max 0.717766
Res 0.399597 sqrt( Sum f_i^2 / 3N )
----------------------------------------
Max 0.717766 constrained